
The challenges

To ensure that we meet the required 
expectations, along with meeting the non 
functional technical needs, we also needed 
to understand the domain and the way 
GRC projects are handled.

The initial technical non-functional 
requirements we collected were as below:

Building a 
compliance and 
audit system for 
restaurants.

The solution
GRC – Governance, Risk and Compliance. 
GRC projects generally have a list of 
assessment questions, Risk statements and 
continuous reviews of the risk statements. These 
reviews will then provide a report of the current 
status and the way forward to mitigate these 
risks for an organization. The reviews also 
mandate the collection of various documents as 
evidence of a particular risk mitigated. This 

company that gets assessed. This nature of GRC 
project execution leads to the non functional 
technical requirements stated above.

GRC – Governance, Risk and 
Compliance

Permission driven Security Aspect

Multi-tenant system with data 
segregated between users of the system

Executive Summary

Vinspect

Building a compliance and audit 
system for restaurants. To enable 
ease of use so that employees at the 
restaurants �nd it simpler to use and 
adapt to the system. The system 
reduced regulatory paper work 
amongst the restaurants and kept 
the records all digital.



TAGs

Execution
We ran a month of discovery phase where 
engineers from Aritha attended several 
discovery sessions with the client. These 
sessions were focused on understanding the 
domain, understanding the current ways of 
handling a project. Understanding the 
problems with current execution. This lead to 
the creation of an initial set of requirement 
documents, wire frames and an overall project 
plan of when different modules of the solution 
could be delivered.

Pegging the high-level project plan provides a 
way to timebox the whole development cycle. 
Without such a project plan these from the 
scratch projects tend to have a long tail 
�nishes. These long tail �nishes allow for 
scope creep and budget creep. 
During the phase of discovery a develop team 
was built and was on standby to start the 
development work immediately. This team 
consisted of Project Manager, Architect, UI 
and API developers, Testers and DevOps 
Engineers. 

To arrive at an initial speed, the sprints were 
cut short to one-week sprints where the 
development team got into the rigor of 
developing and delivering quickly. This set the 
right velocity, quality and allowed the team to 
have very quick feedback cycles. Once the 
team settled down, the sprints were changed 
to two-week sprints.

Technical Solution
A strong user onboarding �ow was set up 
which provided clear demarcation of user 
roles and responsibility. This allowed the 
technical team to build the product keeping in 
context the various users who will act on the 
product.

File Mime type checks
File MIME type checks were implemented 
using standard libraries Apache Tika and 
Apache Commons

To satisfy the strong security needs, the below 
were implemented from the start so that security is 
not an afterthought

File MIME type checks for �le uploads

Token expiry

Password expiry policy

Permission based login

No plain text password

Multi-tenant system segregating
data of customers



Database per tenant
Each tenant has its own database 
and is isolated from other tenants

1

Shared Database, Shared Schema
All Tenants share a database and 
tables. Every table has a Column 
with the Tenant Identi�er, that 
shows the owner of the row.

2

Shared Database Separate Schema
All Tenants share a database, but 
have their own database schemas 
and tables

3

Multi tenancy
The Multi tenant system allows the clients on 
the platform to keep their data segregated. 
Multi tenancy is an architecture in which 
single instance of the software application 
serves multiple customers. There are many 
ways in which multitenancy can be achieved

To handle a lot of administration purposes, 
the architectural decision made was to use 
“Shared Database Separate Schema”.

Challenge_2

Challenge_2

Challenge_3

Excellent Report generation
The success of GRC project depends on 
creating a readable and comprehendible 
report at the end of the execution. To 
facilitate an innovative report generation 
module was build which is con�gurable at 
various levels. Users of the system can create 
templates of the reports and use the same 
while generating the end report. This allows 
organizations to standardize the language 
and format of the report while keeping the 
template dynamic enough to create reports 
for different projects.

Delivery
One of the needs of Cyraacs was to build a 
delivery pipeline which is agnostic of the cloud. 
Meaning, Cyraacs wanted to have the freedom 
of deploying this product either on on-prem 
servers or on the cloud.
A unique engine was built to automate and 
facilitate the build and seamless release of 
features. Given that the releases were being 
implemented in realtime it was imperative that a 
robust testing framework was established to 
meet the pre-de�ned quality parameters. 
Leveraging the vast in-house product design and 
testing experience, Aritha ensured high-quality 
releases by pre-determining the critical paths 



The ability to roll back releases if situation warrants, is enabled by the design and 
technology adopted by Aritha. This helps safeguards data integrity, minimizes data 
loss and provides for consistent user experience. 

ReactJS Java MySQL Kafka

TwilioRazorpayStripe

Development

Third party 
integrations

DevOps

JenkinsAWS

Technology Stack


