
The challenges
The initial technical non-functional requirements
we collected were as below
1.Permission driven
2.Multi-tenant system with data segregated
between users of the system
3.Secure

To ensure that we meet the required
expectations, along with meeting the non
functional technical needs, we also needed to
understand the domain and the way GRC
projects are handled.

Executive Summary

A Cyber Risk Advisory and Consulting
Services company founded by industry
veterans,who have close to 3 decades
of experience in Technology,
Information Security, Data Privacy, Risk
Management, and IT Operations.
The company wanted to build a GRC
product where they could extend their
domain knowledge to their customers.
The proprietary knowledge of domain
and processes accumulated over the
years is what that goes into this
product. With this product anyone can
run GRC related projects.
As the company works as a security
partner to their clients, needless to say
this product too should be built from

Building a
GRC product
A Cyber Risk Advisory and Consulting
Services company

Wesecure

The solution
GRC – Governance, Risk and Compliance. GRC
projects generally have a list of assessment
questions, Risk statements and continuous reviews
of the risk statements. These reviews will then
provide a report of the current status and the way
forward to mitigate these risks for an
organization. The reviews also mandate the
collection of various documents as evidence of a
particular risk mitigated. This data is sensitive

assessed. This nature of GRC project execution
leads to the non functional technical requirements
stated above.

�rst principles in terms of Security

Execution

We ran a month of discovery phase where engineers from Aritha attended several
discovery sessions with the client. These sessions were focused on understanding the
domain, understanding the current ways of handling a project. Understanding the
problems with current execution. This lead to the creation of an initial set of requirement
documents, wire frames and an overall project plan of when different modules of the
solution could be delivered.

Pegging the high-level project plan provides a way to timebox the whole development
cycle. Without such a project plan these from the scratch projects tend to have a long tail

During the phase of discovery a develop team was built and was on standby to start the
development work immediately. This team consisted of Project Manager, Architect, UI and
API developers, Testers and DevOps Engineers.

To arrive at an initial speed, the sprints were cut short to one-week sprints where the
development team got into the rigor of developing and delivering quickly. This set the right
velocity, quality and allowed the team to have very quick feedback cycles. Once the team
settled down, the sprints were changed to two-week sprints.

TAGs

Technical Solution

and responsibility. This allowed the technical team to build the product keeping in context
the various users who will act on the product.

To satisfy the strong security needs, the below were implemented from the
start so that security is not an afterthought

File MIME type

uploads
Token expiry

Password
expiry policy

Permission
based login

No plain text
password

Multi-tenant
system segrega-

ting data of
customers

01 02

03

0405

06

File Mime type checks

Multi tenancy
The Multi tenant system allows the clients on the platform to keep their data
segregated. Multi tenancy is an architecture in which single instance of the software
application serves multiple customers. There are many ways in which multitenancy
can be achieved

File MIME type checks were implemented using standard libraries Apache Tika and
Apache Commons

Database per tenant - Each tenant has its own
database and is isolated from other tenants.

Shared Database, Shared Schema - All Tenants share
a database and tables. Every table has a Column with

Shared Database Separate Schema - All Tenants
share a database, but have their own database
schemas and tables.

Excellent Report generation
The success of GRC project depends on creating a readable and comprehendible
report at the end of the execution. To facilitate an innovative report generation

create templates of the reports and use the same while generating the end report. This
allows organizations to standardize the language and format of the report while
keeping the template dynamic enough to create reports for different projects.

To handle a lot of administration purposes, the architectural decision made was to use
“Shared Database Separate Schema”.

Delivery
One of the needs of the company

the company
 was to build a delivery pipeline which is agnostic of the

cloud. Meaning, wanted to have the freedom of deploying this product either
on on-prem servers or on the cloud.

A unique engine was built to automate and facilitate the build and seamless release
of features. Given that the releases were being implemented in realtime it was

quality parameters. Leveraging the vast in-house product design and testing
experience, Aritha ensured high-quality releases by pre-determining the critical paths
The ability to roll back releases if situation warrants, is enabled by the design and
technology adopted by Aritha. This helps safeguards data integrity, minimizes data
loss and provides for consistent user experience.

Technology Stack

Development

Third party integrations

DevOps

03 04

ReactJS Java MySQL Kafka

03

Stripe Razorpay Twilio

AWS Jenkins

